

University of York

Department of Computer Science

SEPR - Assessment 2

Updated

Requirements

Team Craig

Thomas Burroughs

Huw Christianson

Joseph Frankish

Isaac Lowe

Beatrix Vincze

Suleman Zaki

Requirement Elicitation Process

As specified in our Method Selection and Planning section, the team will be following an agile method, namely an

adaption of the Scrum method. This method promotes face-to-face meetings and communication with the customer.

Using this and information gathered from the reading of Ian Sommerville’s Software engineering book [1] we

devised a suitable process for requirement elicitation. Our process follows the four stages set by Sommerville [1]:

1. Requirement discovery- Involves interaction between the team and the customer to discover requirements.

2. Requirement Classification/Organisation- Involves the categorising of requirements e.g Function and non-

functional requirements.

3. Requirement Negotiation- Involves further meetings with customer to resolve ambiguous requirements and

discuss the degree of necessity of each requirement (whether they are essential or optional).

4. Requirements specification- Involves the documentation of the negotiated requirements.

Below outlines the first three stages of our elicitation process with the last stage, requirement specification,

outlined in a separate section:

On receiving the written brief, the team gathered to brainstorm potential requirements that the game must fulfil

and note questions about ambiguous statements in the brief that must be clarified on meeting with the customer.

These requirements were often vague and required more elaboration. This brainstorm approach paid dividends, as it

allowed all group members to engage with all parts of the brief, and fully understand how their future contributions

to the project would connect with other areas of the project. During the first meeting with the customer the noted

questions were asked and answers regarding the clarification of requirements were noted so further discussion with

the team could commence. From these answers, the team discussed potential design ideas for the game and how

these ideas would meet the requirements of the customer, allowing for all team members to engage on a design

level, particularly group members that felt less confident about upcoming programming tasks. On research of

requirements engineering it became clear that prototyping could help to elicit requirements (As discussed in the IEEE

practice for system requirements specification [2]) , as well has give an insight into potential software architecture.

Due to this each team member was asked to create and provide a paper prototype of a specific game feature. Once

these prototypes were created, the group met once more, to create a unified paper prototype, allowing the group to

consolidate their vision for the games finished product. This unified paper prototype was presented to the customer

at the next meeting. Discussion and negotiation at the second meeting, prompted by the paper prototype, elicited

more requirements for the project which may have previously been unanticipated. These requirements were agreed

upon by both the team and client to be optional.

Once all feedback from the customer had been discussed, the team created a Single Statement of Need (SSON)

which was later agreed upon with the customer. This statement gives a comprehensive understanding of the desired

outcome of the game/project and can provide a simple testable measure of how successful the requirements

process have been completed. For this project the agreed SSON is as follows: “The system will deliver a game about

zombies, given in a top-down perspective, with a novel mechanic.”

This approach allows us to stay focused on the project and keep ideas to an appropriate scope, although it also

hampers creativity at certain points in the creation process.

Requirement Specification and Presentation

A software requirements specification (SRS), is a detailed description of a software system to be developed with its

functional and non-functional requirements. Our SRS was developed based off the agreement that was formed in

the meetings between our team and the customer, as described in the elicitation process detailed above. Using the

recommended IEEE practice for system requirements specification, our SRS will adhere to the following: correct;

unambiguous; complete; consistent; verifiable; modifiable and traceable [2]. We decided to follow IEEE’s practice for

system requirements specification as it allowed us to form more concise requirements which follow specific

conventions as outlined by IEEE’s practice. By following these conventions, the group can ensure that each

modification of a requirement remains consistent with the previous and adheres to the industry’s definition of a

‘good’ requirement. Previous requirements which did not follow the standard were shown to possess inconsistencies

which led to requirements either not being testable, despite the fit criterion, or contained ambiguous natural

language which led to the misinterpretation of the intent and degree of necessity (essential, conditional or option) of

the requirement. By following the IEEE specification, other teams should be able to evolve the SRS with greater ease

by adhering to the protocols written below . The IEEE practice ensures that our SRS has a suitable balance between

comprehensiveness for the customer and enough precise detail for developers and testers [1].

Although the team tried to adhere to the standard set by IEEE it is clear that the convention set needs to be adapted

for our specific use and project scope. Time and resource restrictions mean that the team cannot enforce all the

practices. Some requirements laid out by the IEEE practice are not suitable for our small scope project. For example,

safety requirements, which take into account safety certifications and security requirements, which take into

account privacy issues and data protection, were omitted from our SRS as we could not elicit any requirements of

these types.

Introduction

Purpose: This software requirement specification outlines the requirements for the game created by Team Craig for

the SEPR Module at the University of York. The customer has been declared as the head of the SEPR module.

Document Conventions:

• Fit Criterion: Each requirement within the table has an accompanied fit criterion. The fit criterion is used to

quantify or measure the requirement which makes it testable, which will allow the team to determine

whether a specific implementation actually meets the requirement [3].

• Risks, Environmental Assumptions, Alternatives: Alongside each requirement are environmental

assumptions, risks and alternative for that specific requirement. This will help to assess and minimise

potential risks that may arise. Alternatives provide evidence of further requirement elicitation and is

indicative of the decision process.

• Requirement ID: Alongside each given requirement within a table is a distinct requirement ID. This

requirement ID allows the requirement to be traceable throughout all of the project’s documentation.

• Requirement Category: Each requirement has been categorised as either ‘functional’ (F) or ‘non-

functional’(NF), and further categorisation of the non-functional category has occurred with, for example,

performance (P) , constraint(C), User Interface (UI) and maintainability (M) requirements. More non-

functional requirement categories are likely to expand as more requirements are developed.

• Key Words: ‘Must’ and ‘Should’ describe the degree of necessity for each requirement. ‘Must’ is used in

requirements which are essential, meaning the game will not be accepted if these requirements are not met.

‘Should’ is used in requirements which are conditional, meaning that they should enhance the game but the

game will be accepted by the customers without these requirements being met.

SSON: “The system will deliver a game about zombies, given in a top-down perspective, with a novel mechanic.”

Our requirements are represented in a table to improve legibility and minimise documentation to adhere to our

agile method.

Requirement
ID

Requirement
Description

Fit Criterion Environmental Assumptions,
Risks or Alternatives

F1 Game should
incorporate a novel
mechanic

The game will contain an aspect to the
game not included in the brief, and not
conceptualised by the client - a novel
mechanic. This aspect will function, and
function without adversely affecting the
aspects of the game explicit in the
client’s brief.

As is, it should not be a higher
priority than making a functional
product that meets client
requirements, but if the
mechanic(s) are crucial to system
use, then neglecting them at an
early stage of the project can
make it difficult to work with
down the line

F2 Game must
include a minigame,
distinct from the
main game.

The game contains a mini-game with
self-contained mechanics. This can be
entered by clicking on a graphic on the
world map. The mini-game can be
replayed as many times as the player
wants.

Assume that like the main game,
that the mini-game is not too
graphically intensive and can be
run of the pc’s in the software
lab.

F3 Game must contain
5 powerups

The game will contain the following 5
power-ups: health boost; damage
boost; speed up; nuke; rapid fire. These
will can be acquired using virtual
currency. The power-ups will noticeably
change the state of the game for a
limited time.

Trying to reach too far with the
powerups risks wasted time
making unnecessarily
complicated. Risk that the
powerups do not provide enough
trait enhancements to make it
worthwhile

F4 Game must have 6
six different
locations.

The game will have 6 distinct locations
based on real-life locations at the
University of York. They are as follow:
Ron Cooke Hub with Lake, Langwith,
Goodricke, Constantine and the Retail
Park. These locations should be distinct
and distinguishable in a player’s
memory.

Risk that some locations may be
too similar to each other making
gameplay seem repetitive.

F5 Game must contain
3 different
characters

The player can select from 3 characters,
all of which have a distinct visual
appearance and mechanical differences.

Attempting to implement
character traits that are too
complicated could be time-
consuming for minimal payoff.
Character traits will be kept
simple. Risk that characters’
traits are not evenly matched or
distinct enough leading to the
players only using one player.

F6 Game must contain
2 bosses

The player will have to engage in
combat first with a massive goose living
below the Ron Cooke Hub Lake and
then Koen Lamberts (with a goose’s
head) on entering the Computer Science
building. Bosses will have enhanced
characteristics, such as health and
attack power, that make them feel
distinct from fighting regular enemies

There is a risk that bosses posing
an improper level of challenge
will restrict player engagement,
i.e. an easy boss is boring, and an
overly hard boss is frustrating.

F7 Player must be able
to win the game
after visiting all 6
locations and
defeating all bosses

The player can complete the game once
the player has unlocked all location
achievements by visiting each location
and defeating Koen Lamberts and the
giant goose.

Assume that all 6 locations are
visitable and that both bosses are
beatable. Assume that the player
understands that completion is
the aim of the game. Risk that
the player does not attempt to
finish the game through lack of
interest.

F8 The game must
contain regular
enemies

Game contains zombies (all of the same
graphic design and attributes) which will
roam the world map and distribute from
the edges of the map. Zombies will
approach the player when they enter
the players viewing frame. Players will
then be able to attack zombies by
clicking in the direction of the zombie
using the selected weapon.

Assume that the machine will be
powerful enough to support an
arbitrary number of these
enemies. Assume the player is of
a suitable age to be exposed to
‘violent’ themes.

F9 Game should
contain a way to
navigate between
locations

The game has distinct pathways
between the 6 locations similar to those
on the Hes East Campus which players
cannot stray from. Players can move
characters within locations using the
w,a,s,d or arrow keys

Assume the machine has
supported periphery.
Alternatives include modelling
for different keys and controller
support

F10 Player must be
able to control the
character during
gameplay

The player will be in control of the
player whilst the game is running using
keyboard controls. Players will only not
be in control of players when the game
is paused, the player is on the menu
screen or during cutscenes..

Assumption that player is not
away from keyboard whilst game
is running. Alternatively, player is
in control using a different
peripheral such as a controller.
Assume inputs given while the
game is an active program are
meant for the game

F11 Use of the lake
location on campus
should allow the
player to access a
fishing minigame

Game contains a graphic at the
boundary of the Ron Cooke Hub lake
which allows the player to enter the
mini-game whilst pausing the main
game.
Alternatively, this can just be accessible
through menus either when the game
starts or through the menu which
appears when the game is paused

Risk that the game does not
communicate the lake’s purpose
or entice players to play the
minigame.

F12 Game should
include virtual
currency

The player can collect coins on route to
the 6 locations and the two bosses and
use these to trade for Items at the retail
park.

Risk that tradable items do not
provide a clear benefit for the
player, resulting in currency
being an effectively redundant
mechanic. Alternative: players
forage for food/health packs to
improve their stamina and
health- Risk that this could be
too tedious.

F13 Game should
contain a way for

The player can collect items/travel to
some location which will unlock a new

Risk that collecting items unlocks
new sections of the map is not

players to progress
through locations

location progressing the player through
the game.

obvious and players become
confused on how to progress.
This could mean players lose
interest in game’s story.

F14 Player should be
able to pause the
game.

The game includes a key binding which
allows the game to be paused and
resumed during gameplay.

Risks: Players are not aware of
key bindings and hence, do not
use feature.
Alternatives: Minimising game
window using OS procedures.

F15 Player should be
able to exit the
game.

The game includes an exit button on the
main menu which closes the game
executable.

Alternatives: Game exited in
windows mode using operating
system procedures to close
programs.
Risk: Accidental loss of saved
data due to unclear exiting
procedure.

C1 Project must be
completed in its
entirety by
Wednesday
01/05/2019

Implementation and deliverables will be
finished by 01/05/19. A Gantt chart has
been created given specifics on time
allocations and future scheduling.

Risk D1 and D2 (See Risk
Assessment and Mitigation)

C2 Game must run on
Windows 10

Game successfully runs with all added
functionality on PCs in the software lab
running on the Windows 10 operating
system.

Assume players will choose to
run Windows 10 on the Software
lab PCs. Risk that PCs in the
software lab are not using the
Windows 10 operating system,
making the game unplayable.

M1 Game must be
structured such that
a transition to
another software
engineering team
can be completed.

Game runs from fully commented code
with suitable well defined architecture
diagrams.
Game code abides by the quality
standards set at the beginning of game’s
implementation.

Assumes that quality standards
set by both teams are agreeable
and consistent.
Risk that commented code is
insufficient and no teams choose
to transition with our game.

P1 Games must run
smoothly on
software lab
computers

Game can run at a minimum of 30 FPS
throughout the entirety of gameplay on
the PCs in the Computer Science
software labs.

Assume that the pc’s in the have
the minimum hardware to run
the game at 30 FPS and can use
this as a benchmark for other
pc’s. Risk that changes to the
hardware of the pc’s in the
software lab will negatively affect
performance of the game.

UI1 Game Menu should
be intuitive and
easy to navigate

New users shall be able to select a
character and enter the world map on
the first attempt at using the game
within 1 minute.

Assume that the player is not
impaired and capable of
operating a valid control scheme.
Assume that the loading
sequence of the game, including
cutscenes, does not exceed 1
minute.

References

[1] I. Sommerville. Software Engineering. Pearson, tenth ed., 2016

[2] IEEE, 830-1998. IEEE Recommended Practice for Software Requirements Specifications. Institute of Electrical and

Electronics Engineers, 1998.

[3]- S.Robertson et al. Mastering the Requirements Process. Sep 2012. Available at:

http://www.informit.com/articles/article.aspx?p=1929849&seqNum=7

http://www.informit.com/articles/article.aspx?p=1929849&seqNum=7

