

University of York

Department of Computer Science

SEPR - Assessment 3

Implementation Report

Team Craig

Thomas Burroughs

Huw Christianson

Joseph Frankish

Isaac Lowe

Beatrix Vincze

Suleman Zaki

The selection of Geese Lightning’s project was influenced by their clear, concise and testable game requirements, as

seen in the updated requirements specification. Minimal changes were made to either the layout of the requirement

specification or the requirements themselves. No additions were made to the requirements table, however, fit

criteria P2.2 for requirement P2 was removed from the specification because it could not be met using the resources

available to us. For each new implemented feature either black-box or unit tests have been created to test if it fulfils

the requirement not fulfilled by Geese Lightning. To improve traceability a traceability matrix has been created to

more easily show which requirements have been fulfilled and tested.

On the selection of Geese Lightning’s project, our programmers took time to understand the architecture of the

game and discuss whether to adopt their quality standards and coding conventions. The team’s programmers agreed

that we should adopt Geese Lightning’s class architecture e.g. using entities and coding conventions as they were

very familiar with ours for Assessment 2. These adoptions required very little effort to implement. Programmers met

several times before implementation began to discuss how the team could extend the game using pre-existing

methods/classes to maximise the time available for making additions to meet the requirements.

In order to meet the full brief and meet the requirements put in place by Geese Lightning numerous features needed

to be added. These include the addition of 3 other locations, a 3rd character type, 2 other powerups, 2 other zombie

types, 2 new evil bosses and a ‘save and load’ feature. Geese Lightning stated in their Implementation report that

requirements F5, F7 and F8 had not yet been implemented due to time constraints. As of the end of Assessment 3 all

these requirements have now been fully implemented. The additions made by our team have also ensured that each

of the requirements partially implemented by Geese Lightning (F1, F3, F4, F6) have now been fully implemented.

Furthermore, the team has also made changes to the game’s previous functionality, namely: character and object

hitboxes, player movement and fixing a game ending crash. These changes have improved the game’s previous

functionality improving the user experience and ensure the game better fulfils the requirements, specifically- F9, N2,

E1. This report details each of the new features and changes to previous features by describing the

changes/additions made to the previous team’s code and the related requirements which the feature fulfil. For each

feature, a suitable explanation and justification has been made in terms of improvement to user experience as well

from an architectural viewpoint.

Team Geese Lightning’s previous architecture was well represented by their UML diagrams and minimal changes

needed to be made. However, some changes were necessary in order to fix or improve the game’s previous faulty

functionality. Any additions/changes to source code or are architecture etc are reflected within our updated UML

diagram and can be seen within our newly created change table.

● Full UML diagram: https://teamcraigzombie.github.io/assets/downloads/UpdatedUML3.pdf

● Change Table: https://teamcraigzombie.github.io/assets/downloads/ChangeTable3.pdf

● Updated Requirements: https://teamcraigzombie.github.io/assets/downloads/UpdatedRequirements3.pdf

Changes to previous functionality

Feature: Hitbox adjustments

Requirement: F9

Changes/
Additions

Addition of an image layer to preserve the appearance of objects that had tiles removed from the collision
layer.
Change to update() method in Character class to relocate vertices locations.
Addition of wallCollision() method to Character class to better handle collisions.

Explanation/
Justification

Previously both the characters and zombies would snag on the edge of collidable objects including each
other. Relocating the vertices in the update() method to be slightly further away from the player helped
because the collision points were now ahead of the player so movement would be stopped before part of
the player entered the collision tile. Addition of the wallCollision() method was needed for the new
collision code which would now stop movement in the specific direction in which the collision occurred,
rather than stopping all movement. This code is self-contained and therefore, does not need to be in the
update() method and can be in its own method. Having it in its own method also improved readability.
These changes have been justified as they allow the player to move between collidable objects with
greater ease and ensures characters can move between spaces which the player perceives to be passable,

https://teamcraigzombie.github.io/assets/downloads/UpdatedUML3.pdf
https://teamcraigzombie.github.io/assets/downloads/ChangeTable3.pdf
https://teamcraigzombie.github.io/assets/downloads/UpdatedRequirements3.pdf

preventing frustrations. Furthermore, this change was justified as it allows Zombie AI to be more effective
as Zombies have less opportunity to get stuck, which would’ve reduced the game’s difficulty.

Feature: Player Movement

Requirement: E1

Changes/
Additions

Changes made to keyUp() method in the ZeprInputProcessor class.

Explanation/
Justification

Previously the player’s character would be prevented from moving when keys were pressed
simultaneously. The games would stop movement on an axis if a key corresponding to the axis was
released regardless of if the opposing key was still being pressed. The keyUp() method has been changed
so that now when a key is released it first checks to see if the opposing key on that axis is still being
pressed or not. If it is then movement is swapped to the other direction. If it isn’t then the movement in
that axis is stopped. This change prevents any instances where a key is being pressed but the player is not
moving.
These changes have been justified as they allow the player to move through the map with more fluidity
and ease. This helps to prevent players from becoming frustrated when improper movement results in
damage from incoming zombies/bosses, which should hopefully ensure players enjoy the game more.

Feature: Game ending crash/error

Requirement: N2

Changes/
Additions

Removal of renderer.dispose() call from the dispose() method in the Level class.

Explanation/
Justification

At the end of the Halifax level a spontaneous crash would occur, preventing the player from completing the
level and hence the game at that point. The crash would create an error dump file. Upon analysing this file
it was realised that the crash was related to the renderer attribute of the Level class when the dispose()
method was called. Therefore, the problem was with the renderer.dispose() call. The removal of this call
prevented any attempts to access restricted memory and thus cause access violations; stopping the crash
from occurring. It was also deemed that the dispose call was unnecessary as any pointers to the renderer
would be lost anyway when the screen was switched therefore removing it from memory.
This change is justified as it allows the character to complete the game, satisfying requirement N2. The
crashing of the game would have led to player frustration and loss of interest due to the loss in progress.
Players can now set the goal of completing the game knowing crashes will not prevent them from reaching
their goal, hopefully providing more motivation and enjoyment.

Newly added featured

Feature: 3 additional locations

Requirement: F1

Changes/
Additions

Additional classes for each new level extending the Level Class

Explanation/
Justification

A CS Building Level, Greg’s Place Level and Library Level have been added to the game with menu buttons
added with descriptions to add to the storyline. Each new level required a new class which extended the
Level class as can been seen in the architecture, preventing the need to re-write the previous group’s
methods. Within each class the ‘waves’ array was adjusted to ensure that each level had zombie waves one
greater than the level before, helping to achieve requirement F2. Furthermore, each level had a newly
created Tiled map to help distinguish between the levels and provide the player with new challenges. The
levels were added to the Switch Case in the Zepr class in the changeScreen method. This Switch Case was
used to switch between screens when the ‘progress’ was updated by complete() method in each levels
class allowing the player to progress through the game.
These changes have been justified as they ensure requirement F1 is fulfilled and allows for two evil bosses
to be implemented one which needed to be implemented on the 6th level (Library Level). Having more
levels makes the game feel more complete so provides more of a storyline, hopefully engaging the player
more with the game.

Feature: 2 additional power-ups

Requirement: F6

Changes/
Additions

Additional classes added for each new power up extending the PowerUp class.

Explanation/
Justification

A ‘Nuke’ power up was added which ends the current wave instigating the next wave to begin.
Upon walking over this power up it is activated, and its delay and timer are started. Once the delay finishes,
all the alive zombies in the current wave are killed. This delay makes the nuke function a little more
realistically like a bomb. Once the timer ends then the cooldown period is over so the power up deactivates
and the next wave begins. The timer and delay are needed so that the nuke does not kill zombies in any
wave other than the current wave. An ‘Insta Kill’ power up was added which allows the character to kill
each zombie on one hit. When the player walks over this power up a timer starts, and it activates giving the
player the ability to kill zombies in one hit. Once the timer ends the power up deactivates. Having new
classes which inherit from the PowerUp class keeps in line with the architectural structure already present.
These changes have been justified as they ensure requirement F6 is fulfilled. Adding more power ups to the
game adds greater variation to gameplay creating more excitement and opportunities for players to make
critical decisions, deepening player’s interests. Nuke and Insta Kill powerups were chosen as many players
will be familiar with their functionality from other games, so little confusion should arise from their use.

Feature: Additional character

Requirement F3

Changes/
Additions

Changes made to respawn() method in Player class which handles the properties of the additional
character.

Explanation/
Justification

An Engineer character type has been added that has an increased attacking range so can attack Zombies
from a further distance. The player can select this character type from the SelectLevelScreen as with the
other character types. To handle the new player type, some new code was added to the method already
present in the Player class which already implemented the other player types. This new code assigns values
to the relevant attributes of the Player class to give this new character its unique stats.
This change has been justified as it ensures requirement F3 has been fulfilled. it also provides greater
variation to gameplay, like many new features, making the game more engaging for players. Having
numerous character types allows the player to add the replayability value of the game so players can
experience the game with new challenges.

Feature: 2 evil bosses

Requirement F7

Changes/
Additions

Addition of new classes for each boss which extends the Zombie class;

Explanation/
Justification

At the end of the Courtyard level a ‘Big Chef’ boss spawns after defeating the final wave of zombies. This
boss has increased health and therefore takes more damage to defeat. The level cannot be completed until
the boss is defeated. he final level spawns a ‘Librarian’ boss. The two bosses were implemented by changing
the classes constructors to assign different values to its attributes, such as assigning a drastically increased
health value. New classes were required as any other approach would require changes to many other
classes. Adding new classes also keeps in line with the approach used to add new zombie types.
These changes are justified as they ensure that requirement F7 is fulfilled. Adding bosses to the ends of
levels provides a new form of challenge for the player and provides a useful marker of progression,
elevating the player’s sense of achievement after completing the level. This, in turn, improves how
enjoyable the game is.

Feature: Mini-game

Requirement F5

Changes/
Additions

Addition of new MiniGameLevel class which extends Level class.
Addition of a Goose class which extends Character class.
Changes to touchDown() and touchUp() methods in ZeprInputProcessor class.
Addition of new boolean attribute in Player class.

Explanation/
Justification

A mini game has been added to the game with a corresponding button added to SelectLevelScreen. In this
mini game the player must shoot geese flying across the screen in order to score points. If the player misses
a shot, then they lose a bullet. Once they lose 5 bullets the game ends and their final score is displayed.
Extending the Level class for the new MiniGameLevel class was useful as it prevented having to re write
code. However, some methods such as the render() method had to be overridden as they required a

different implementation. The class also required many new methods such as shoot() and isGooseMissed()
as they implemented completely new functionality not present in any other part of the game as is the
nature of mini games. A new Goose character class was needed as it had different values for its attributes
but extending Character meant much more code did not have to be rewritten. In order to support the
functionality of the methods in the MiniGameLevel class, some access levels for some attributes in the Level
class had to be changed so that MiniGameLevel could access them. Changes were required in the input
processor and a new boolean attribute was required in the Player class so that player inputs could be
received and used in the mini game.
This change is justified as it ensures requirement F5 is fulfilled. A mini-game provides an alternate form of
enjoyment for the player should they lose interest in the main game. This is because the mini-game can be
played with less intensity or concentration. By including a mini game, we can ensure that players do not tire
of the game’s feature as quickly or ‘burnout’.

Feature: 2 additional zombie types

Requirement F4

Changes/
Additions

Addition of new classes for each new zombie type which extend the Zombie class.
Changes to the spwanZombies() method in the Level class.

Explanation/
Justification

A Medic Zombie (increased health) and Sporty Zombie (increased speed) type have been added to the
game. The number of each Zombie type, including the generic zombie, is randomly generated by the
spawnZombies() method. Depending on which number is generated one of the types of zombies is spawned
by the method and added to the aliveZombies array. This change to the spawnZombies() method is needed
in order to randomly spawn the different types of zombies. New classes were used to implement the
different zombie types. The constructors would assign the appropriate values to the corresponding
attributes to make each zombie different. New classes were used as any other approach would require
drastic changes to many other classes.
This change is justified as it ensures requirement F4 is fulfilled. The numerous Zombie types adds a level of
unpredictability to each level creating excitement and forces the player to change player styles adding
further challenge.

Feature: Save and load game

Requirement F8

Changes/
Additions

Changes to show() method in SelectLevelScreen class.
Addition of new attribute to SelectLevelScreen class.

Explanation/
Justification

To implement a save/load feature the buttons on the level selection screen were given listeners so that
when they were pressed they would perform the desired action. A new attribute was added which contains
the file handler for the save file. When the save button is pressed the file handler writes the current
progress to the text file. When the load button is pressed the progress is set to what the file handler reads
and the level select screen is reloaded in order to update it with the saved progress.

Features not fully implemented

All features required by Assessment 3 in the full product brief have been implemented as well as

requirements stated by Geese Lightning’s Requirement Specification, apart from F2 and F3 which have only

been partially implemented.

Although, requirement F2 (The game must get progressively more difficult) has been met by ensuring more

zombies are spawned in later waves and stages, we have not implemented fit criterion F2.2 which states

that ‘More difficult zombie types are spawned at later waves and stages. We decided not to do so as we

believe that the increase in the size of waves provided a sufficient increase in difficulty and challenge as

the game progressed. The inclusion of more difficult zombie types could make the game increasingly

frustrating, leading to the loss of player motivation/interest.

Similarly, requirement F3 (There must be three different player types the user can choose to play as with

different abilities) has been met by having three different character types with varying stats e.g speed, max

health. Due to time constraints, we were unable to implement special abilities (F3.2). Despite this, we still

believe that each character type is distinguishable from each other and provides the user with enough

choice, challenge and enjoyment.

