
 

 

 

 

 

 

 

University of York 

Department of Computer Science 

 

SEPR - Assessment 4 

Project Review 

Team Craig 

Thomas Burroughs 

Huw Christianson 

Joseph Frankish 

Isaac Lowe 

Beatrix Vincze 

Suleman Zaki 

 

 

 

 

 

 

 

 

 



Team Management and Team Structure 

The team’s structure and management for the end of the project has remained similar to Assessment 3. Limited 

changes were made to the team’s structure from Assessment 3 as we believe that this system maximized 

collaboration and minimised the risks encountered as a result of poor team management in Assessment 2. For the 

final assessment, the team has continued to implement a core leader who is responsible for managing sprints, 

leading team meetings and assessing the performance of team members. The team have continued to implement 

‘experts’ also known as deliverable leaders. Each expert is responsible for ensuring their deliverable is completed on 

time, as well as having the authority to make executive decisions. Each team member has a concrete role for which 

they have developed significant skills over the project. This means that the team’s structure is essentially completely 

concrete with limited flexibility to change roles. Despite this, no one individual is responsible for the entirety of a 

deliverable. This has been implemented so there is a greater crossover of work and team members have some 

understanding of each other’s roles [1], reducing the risks of delays should a team member fall ill. 

Although limited changes were made between Assessment 3 and 4, the team’s structure and management has 

evolved significantly throughout the project. This has reduced the potential for risks, such as team conflicts, and also 

allowed team members to engage in self-development. The switching of roles early on has helped productivity and 

ensured that team members take on suitable roles. For example, in the Assessment 1 plan, some team members 

took on programmer roles based on their desire to improve their programming. Relatively new programmers were 

responsible for the bulk of the programming in order to drive their self-development. However, in Assessment 2 it 

became clear that the learning curve was too steep and the teams roles were adjusted. From this point, the team 

decided to structure the team with greater emphasis placed on matching roles to team members’ strengths, with 

less importance placed on self-development. The team made use of the suggestions of Sommerville, who believes 

that team members strengths should be recognised and exploited to maximise productivity and quality [1]. 

The limited flexibility of the team’s structure is a result of the project’s nature. At the beginning of the assessment 

each member’s knowledge on each deliverable was similar, however, as the project progressed team members 

became more knowledgeable on their own tasks, and a clear knowledge gap was created. The short time frame for 

each assessment meant that a dramatic change in roles would result in time being wasted learning new tools and 

reading previous documentation on that work package. For example, switching between a documentation and 

testing role between Assessment 3 and 4 would prove difficult due to the fact that the knowledge and experience 

gained from testing in the previous assessment is unlikely to be learned in the time frame for Assessment 4.  

The clearest evolution in our team’s structure was the emergence of a natural leader. Initially, as can be seen in our 

Assessment 1 Method [2], the plan was to share the leadership role in a self-organising team. A different team 

member was supposed to take on the leadership role if their skills most suited the deliverables at that given time [3]. 

For example, if the assessment is programming heavy, the plan was for the main programmer to take on the lead 

role. However, the lack of a concrete leader led to confusion on who was responsible for resolving conflicts and 

manging the team. This resulted in team members passing off responsibility and blame to other members who were 

unaware of their leadership responsibilities. To combat this issue, the team decided to elect a leader at the start of 

Assessment 2 and follow a strict management style. Furthermore, to avoid confusion over responsibilities, the team 

decided to define and document the roles of our team more heavily after Assessment 1 so we could identify the 

contributions by each team member and learn what missing aspects could hinder our results [4]. 

The greatest evolution to the team’s management was made between Assessment 1 and 3 during the holidays. We 

planned to manage the group as a whole, as we had done for the first half of each assessment. This included 

continuing weekly meetings via Google hangouts and keeping weekly sprints. This plan was to be reinforced by a 

Gantt chart to help avoid delays and guide the team when working remotely. It was difficult to organise meetings 

and work collaboratively on the same tasks due to our differing schedules, resulting in less work being produced. 

Team members would simultaneously work on the same deliverable, producing the same deliverable twice, this 

wasted time, effort and resources. To combat this, we evolved our team management over Easter to avoid the same 

problems. Team members only completed work which didn’t require much collaboration and were independent 

from other tasks. Workloads over Easter were reduced to account for revision and the fact that most deliverables 

require collaboration. In hindsight, during these breaks the team should have decomposed work packages into 

separate autonomous segments which could be worked on individually, to form one collaborative piece.  



Software development methods and tools 

To complete this project, we have continued to use an agile development method, more specifically an adaption of 

the Scrum methodology, as described by Sommerville [5]. The continuation of this method was approved by the 

team because of its appropriateness for small teams with short deadlines [6], its flexibility to embrace changing 

requirements and our success with it throughout the project. We have continued to have two meetings between 

each one-week sprint with an additional third meeting every fortnight, dedicated to managing transpiring risks. The 

longevity of our chosen method is due to its easy implementation and flexibility, which means that even with 

changing requirements and risks, the methodology can be adapted to provide the necessary structure we desire.  

Our methodology evolved little over the project due to our extensive research of methods, mainly through the 

reading of Sommerville’s Software Engineering [5], and the project itself. At the start of Assessment 1, we made our 

initial changes to the chosen Scrum methodology. Instead of short daily meetings, we had longer weekly meetings as 

this was more suitable for the less intense nature of this project and the team’s university schedule. Originally, for 

Assessment 1 the sprints were two weeks long with one meeting each week. But, from the second assessment, 

instead of one weekly meeting, two weekly meetings were scheduled, and sprints were reduced to one week long.  

The changes between Assessment 1 and 2 were made so our method and tools better suited the working and 

leadership style of our team. It became clear during Assessment 1 that some team members did not communicate 

well using our chosen communications tools, mainly due to a lack of confidence. Furthermore, some team members 

did not work well when having to self-manage their work due to a lack of motivation and worked better when 

assigned tasks directly at weekly meetings.  Therefore, by having two weekly meetings and introducing audio-based 

communication tools, such as Google hangouts, a greater turnover of work was achieved from those team members. 

Changing requirements and risks also led to the need to increase the number of weekly meetings. An additional risk 

meeting was added during Assessment 3, which took place every fortnight to allow the team to make changes to our 

risk table and put in place any mitigation plans. For example, Risk 18 [7] transpired during Assessment 3 due to the 

change-over of projects, and the associated mitigation plan was discussed in our fortnightly risk meeting. This 

prevented future testing from being delayed and incomplete requirements due to faulty code.  

The changeover of projects in Assessment 3 and 4 provided an opportunity to switch to another Software 

engineering methodology by following our chosen group’s documentation. However, due to our success with our 

method we felt that any benefits that switching may provide was overshadowed by the time wasted learning the 

new method. The iterative nature of Scrum meant that any major changes that had to be implemented could be 

discussed and potentially re-planned at the weekly meetings. Although Scrum promotes the limited use of 

documentation, we did introduce a change table to use in our meetings to assist in the transition of projects. We 

introduced this on the recommendation of IEEE’s standard for configuration management [8]. This allowed the team 

to assign further responsibilities at each Scrum meeting and thus the team felt more up to date with changes. 

Over the project, few of our development tools changed due to our effectiveness using each tool and our wish to 

reduce any time wasted leaning new tools. For example, in Assessment 3 we chose not to swap our diagram design 

tool, Lucid Chart, for our chosen team’s StarUML tool, despite its improved readability, due to the learning curve 

required. On the other hand, further tools were added when the specification differed from the previous 

assessment. For example, in Assessment 1 the team was not aware of all the necessary development tools needed 

for the implementation of the game in Assessment 2. This led to the addition of our tiled map editor, Tiled. Another 

reason for the evolution of our development tools was the changeover of projects for which the new game required 

a continuation of specific tools to satisfy unfulfilled requirements. For example, in Assessment 3 our chosen team 

required us to use 8-bit graphics for characters. As our team had not yet needed such a tool, it seemed appropriate 

to use our chosen team’s choice of graphics tools, Gimp, as this would provide the most seamless transition.  

An example of where our tools changed in accordance with the team’s understanding was with our version control 

tool, GitHub. A few members who had not worked with version control before, found it difficult to use the command 

line. However, since Git is widely used and easily accessible the team did not want to switch to a new tool, foreign to 

all team members. To solve this issue, the team introduced GitKracken which provided an interface which is more 

intuitive. Despite this some tools remained unchanged, such as Whatsapp, LucidChart and Microsoft Excel due their 

comprehensiveness and appropriateness for the project. 



References: 

[1]- I. Sommerville. Software Engineering. Pearson, tenth ed, 2016 pp. 75-76 

[2]-  Team Craig. Method Selection and Planning- Assessment 1. Available: 

https://teamcraigzombie.github.io/assets/downloads/Plan1.pdf  

[3]- NB. Moe. Understanding Shared Leadership in Agile Development: A Case Study. IEEE, Jan 2009.  

[4]- J. Manjovskoya. How to Set Up Software Development Team Organization That Will Kickstart Your Business.  Sep 

2018. Available: https://www.daxx.com/blog/development-team/set-up-development-team-kickstart-your-business  

[5] – I. Sommerville. Software Engineering. Pearson, tenth ed, 2016, pp. 85-86. 

[6] – L. Rising et al. The Scrum software development process for small teams. Journal: IEEE Software, Volume 17, 

Issue 4, IEEE, pp. 26-32. 

[7] – Team Craig. Updated Risk Assessment 3. Available: 

https://teamcraigzombie.github.io/assets/downloads/UpdatedRiskAssessment3.pdf  

[8]- IEEE. IEEE Standard for Configuration Management in Systems and Software Engineering. IEEE, March 2012. 

Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6170935    

 

https://teamcraigzombie.github.io/assets/downloads/Plan1.pdf
https://www.daxx.com/blog/development-team/set-up-development-team-kickstart-your-business
https://teamcraigzombie.github.io/assets/downloads/UpdatedRiskAssessment3.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6170935

