
 

 

 

 

 

 

 

 

 

   University of York 

Department of Computer Science 

 

SEPR - Assessment 2 

Architecture 

Team Craig 

Thomas Burroughs 

Huw Christianson 

Joseph Frankish 

Isaac Lowe 

Beatrix Vincze 

Suleman Zaki 

 

 

 

 

 

 

 

 

 

 



Concrete Architecture  

For our game we decided to use the LibGDX Engine which provides a useful framework and suitable methods for 

implementing our game. As stated in our Assessment document the team is required to code in Java, an object-

oriented programming language, which all team members were familiar with. The LibGDX framework supports the 

use of Java and so proved an obvious choice. Our abstract architecture diagram from Assessment 1 was based on 

this framework, but as will be discussed in this document, large parts of the LibGDX framework was misunderstood 

and represented wrong due to improper research and poor documentation.  

UML Class Diagrams  

We chose to represent our architecture with UML class diagrams, as it is intuitive, and a widely accepted industry 

standard for object-oriented programming. The diagram only represents the current version of the game. Functions 

that are to be implemented for the full product brief, for example the mini game, have been excluded from the 

diagram to avoid confusion. Unit tests are also not included as they are not important nor relevant for the 

architecture. 

Full UML Diagram: https://teamcraigzombie.github.io/assets/downloads/FullUMLDiagram.pdf    

       

We found that our full concrete architecture diagrams were difficult to read and comprehend because of the 

complexity of the software, and so we also created a simplified UML diagram. This simplified version does not 

contain any class attributes or class behaviour and so has less document conventions and less complex notations. 

This makes class relations and conceptual ideas easier to observe especially for non-team members or for team 

members who are less technically skilled. 

Simplified UML Diagram: https://teamcraigzombie.github.io/assets/downloads/SimplifiedUMLDiagram.pdf  

Diagram conventions and notations 

Below we have stated our notation conventions for all of our UML diagrams. This helps to provide consistency, which 

in turn, should improve readability and maintainability for all our UML diagrams. This should also help to achieve 

requirement M1 as seen in our updated requirement document.  

The heading of the box represents the name of the class. Between the class name 

heading and the next line are the attributes of the class with their appropriate access 

modifiers, followed by all the class methods below the next line.  

The access modifiers for both the attributes and methods are noted as follows: + for 

public, -  for private, --for protected.  

To show the clear distinction between different relationships between classes we 

have used two coloured arrows. Inheritance between two classes is represented as a 

black arrow and aggregation is represented by a blue arrow.  

 

 

Diagram Tools 

For the creation of our UML diagrams we used a free online tool called LucidChart. A few members of the group 

were familiar with this tool from previous projects so was an obvious choice. The tool boasts many useful features, 

such as a large shape and operator library and the ability to export the diagrams as numerous file types. For 

example, the tool allowed us to download the file as an image file which was useful when formatting 

documentation. A key priority when finding a suitable UML diagram tool was to find a tool with a good balance 

between usability and complexity. We needed a tool which all team members could use but provided enough detail 

in order to specifically describe our architecture. Lucid chart provided us with this. 

https://teamcraigzombie.github.io/assets/downloads/FullUMLDiagram.pdf
https://teamcraigzombie.github.io/assets/downloads/SimplifiedUMLDiagram.pdf


Justification for Architecture 

From Abstract to Concrete 
Our initial abstract view made several assumptions as to the nature of our implementation framework (libGDX) that 

eventually turned out false or had been oversimplified. In our concrete implementation, we decided that for ease of 

implementation, attempting to utilise libGDX outside of how it was designed to be used would be counter-

productive to producing a working product. Our response to this decision, was to read through documentation, and 

decided that the best option available to us would be to split up game objects in to several groups of interrelated 

and functionally-grouped sets of related classes. For example, the different types of screens needed to meet 

requirements, specifically REQ ID: F5, F14, F15, were grouped together as can be seen in our architecture as well as 

our documented code. A further example would be the grouping of object types (power-ups REQ ID: F3, ground 

items REQ ID- F13) that exists within the ‘Game Play’ layer as described in our initial abstract architecture.  

Much of the initial separations between what we had initially described as ‘implementation layers’ were proven to 

be good decisions when we began implementation, most of which were implemented and remained as initially 

planned. However, our initial view of how interactions between our objects would occur was proven to be severely 

flawed and has received a great deal of revision. An example of this would be how we thought that an in-game 

location could be implemented as an object at an equal level to player entities. In reality, we discovered that in order 

to create an elegant implementation that would be easily expandable to meet further client requirements, we would 

have to treat gameplay, menus, and winning states as different kinds of ‘screen’ objects. Doing this allowed us to 

utilise more of the libGDX framework to implement our work, in the process cutting down development time and 

improving overall stability. This became on overall theme to our changes to architecture as we made many suitable 

changes to our architecture to maximise the use of the LibGDX framework. We also believe that these changes 

should help us to produce a more understandable architecture ensuring that any team who chooses our game for 

Assessment 3 can make a seamless transition (REQ ID: M1). 

Below we have listed the components (classes) for our game structure. Under each heading we have listed the 

requirements which that class either satisfies and attempts to satisfies along with a description of the classes 

purpose and relationship to other classes. 

CraigGame 

• Requirement(s) related to this class: F14, F15 
This class is responsible for opening the loading screen on the execution of the game. This class also uses a switch 
case to manage and switch between screens as and when player behaviours are detected. For example, on unlocking 
the ‘Golden lock’ the switch case is called switching the game to the EndScreen. 
EndScreen  

• Requirement(s) related to this class: F7, F15 

• Related Abstract architecture class(s): Menu System  
This class implements the actions if a player wins the game by unlocking the ‘Golden key’ the end screen will be 
called using a switch case. The end screen displays an ‘Exit’ button with a button listen which uses a switch case to 
set the screen to the MenuScreen. 
LoadingScreen 

• Related Abstract architecture class(s): Game Engine, Menu System 
When player starts the game, the LoadingScreen class will call the MenuScreen which displays the main menu. The 
player can make their first interaction with the game at this point. 
MainScreen 

• Requirement(s) related to this class: F4 

• Related Abstract architecture class(s): Location 
The main screen is the frame on which most of  the user interaction is focused. It is needed in order to maintain 
interactions between other objects that make up the gameplay. Its attributes hold some game assets, instances of 
the other objects in the game and important values needed for certain functionality such camera movement and 
locking the player within a certain area. Its update method is the main runtime method of the game which calls the 
update methods of other classes, checks for user inputs and collisions 
MenuScreen 

• Requirement(s) related to this class: F5, UI1 

• Related Abstract architecture class(s): Menu System 



MenuScreen gives the option for the player to either start the game or to exit. A character type can be chosen from 

a drop-down menu. All buttons are placed within a table which has been staged using actors, to which listeners have 

been added. A menu was not stated in the assessment 2 requirements but included to improve usability. 

PauseScreen 

• Requirement(s) related to this class: F14 

• Related Abstract architecture class(s): Menu System 

While playing the game, the escape key gives the option to the player of pausing the game and transitioning to and 

from the static pause screen. This PauseScreen class does not dispose of the previous screen so the game can be 

resumed from the point of pausing. 

MaxHealth, Coffee and Rapid-Fire 

• Requirement(s) related to this class: F3 

• Related Abstract architecture class(s): Location 

These classes override the methods from the Powerup class. Each implements different functionality inside the 

methods, so the different classes are needed to do so. Coffee affects player speed, MaxHealth affects player health, 

and Rapid-Fire affect how many bullets are fired. Rapid-Fire also implements a timer system and contains a method 

which indicates the timer status so that the power ups affect can end. 

Player 

• Requirement(s) related to this class: F1, F9, F10 

• Related Abstract architecture class(s): Player 

This class handles all functionality related to the player and characters. Most of its methods are used in relation to 

user inputs. Its attributes hold important information about the current state of the player such as the speed and 

health. The update method that is regularly called by MainScreen along with other methods such as rotate, and the 

move methods are needed to change the values of the attributes and keep them up to date. 

Projectile 

• Requirement(s) related to this class: F9 

This class is responsible for handling the creation, motion and termination of an instance of a bullet. When the 

player shoots an instance of this class is created and added to a list in MainScreen. The methods of this class are 

needed in order to continuously update bullet positions and to check if any have collided with a wall or left the map 

so that they can be removed.  

 

Entity Classes: 
Entity 

• Requirement(s) related to this class: F3 

This abstract class’ two methods check for collision and if cell is blocked. All types of entities will in some way 

interact with other entities and they can’t be in an area that is blocked so this class implements and handles these 

aspects. All subclasses then call on these methods. 

Key 

•     Requirement(s) related to this class: F7, F13 

Overrides and implements the checkCollision() method from GroundItem class. This class was needed so that it could 

hold information about if it had been found or not and so that we could implement the functionality to change the 

information when a collision occurred with a player. 

GroundItem 

• Requirement(s) related to this class: F3 

This abstract class is responsible for setting up the structure for all items on the ground that the player can interact 

with(power-ups/keys). Its method is used to decide if player has collided with an instance of this object. This method 

is overridden by subclasses which implement its functionality. All power ups and keys are of the same size and can 

interact with the player so rather than the classes setting up and handling these aspects independently, this class 

does that instead to prevent repetitive code. 

Powerup 

• Requirement(s) related to this class: F3 

This abstract class’ constructor finds and sets a random position for a power up to be in. All power ups are placed in 

random locations so this class implements that rather than the subclasses doing so independently as there would be 

no difference. 


